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Pulse velocity in a granular chain
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We discuss the applicability of two very different analytic approaches to the study of pulse propagation in a
chain of particles interacting via a Hertz potential, namely, a continuum model and a binary collision approxi-
mation. While both methods capture some qualitative features equally well, the first is quantitatively good for
softer potentials and the latter is better for harder potentials.

DOI: 10.1103/PhysReVvE.69.037601 PACS nunier05.45—-a, 45.70-n, 45.05+x

The physics of a chain of particles interacting via a granu- The displacement of thith granule k=1,2,...L) in
lar potential, i.e., a potential that is repulsive under loadingthe chain from its equilibrium position in a frictionless me-
and zero otherwise, remains a challenge despite a great dedilm is thus governed by the equation of motion
of recent work on the subje€l—15. Theoretical studies of
pulse dynamics in frictionless chains have relied primarily d?y, .
on numerical solution of the equations of motih5,7— F:_a(yk_ykJrl)n O(Yk— Yk+1)
9,13,14. Analytic work has relied on two rather different, in T
some sense contradictory, approximations, with very little +a(Yee1— V0" L0V 1— Vi) (3)
direct comparison between them. It is our purpose to com-
pare the predictions of these two approaches for the pulsgere 6(y) is the Heaviside functiong(y)=1 for y>0,
velocity to each other and to numerical simulations, in orderg(y)=0 for y<0, and #(0)=1/2. It ensures that the par-
to assess the regimes of validity of each. ticles interact only when in contact. In this report we con-
One of the approaches is based on continuum approximasider a finite open chain, and therefore the first term on the
tions to the equations of motion followed by exact or ap-right-hand side of this equation is absent for the last granule
proximate solutions of these equatidi’s16—18. This ap-  and the second term is absent for the first.
proach is expected to give useful results when the pulse is |nitially the granules are placed along a line so that they
ratherbroad, i.e., when the velocity distribution of the grains just touch their neighbors in their equilibrium positiofre
in the chain at any instant of time is rather smooth. The Otheprecompressidm and all but the leftmost particle are at rest.

approach is based on phenomenology about properties gfe initial velocity of the leftmost particle is, (the im-
pairwise(or at times three-bodycollisions together with the  pulsa. In terms of the rescaled variables

assumption that pulses are sufficientiarrow to involve
only two or three grains at any one tinj#4,19,20Q. Some mo3
rigorous methods in the literature might, with additional yk:(
work, also be brought to bear on the probldi2,21].

Among the interesting quantities that one aims to calculat%q. (3) can be rewritten as
with these approaches is the pulse velocity. In turn, success-
ful calculation of the pulse velocity requires a good under-
standing of the pulse width.
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The standard generic model potential between monodis- + (X 1= X" 10X 12— %) s (5
perse elastic granules that repel upon overlap according to
the Hertz law is given by22,23 where a dot denotes a derivative with respect.tén the

rescaled variables the initial conditions becomg(0)
=x(0)=0, Vk#1, x;(0)=0, andx;(0)=1.
Whenn>2 an initial impulse settles into a pulse that is
increasingly narrow with increasing, and propagates at a
V(S k+1)=0, 5>0. ) velocity that is essentially constant and determinechlaynd
by the amplitude of the pulse. Far=2 the pulse spreads in
Here time and travels at a constant velocity independent of pulse
amplitude. In the latter case there is considerable back-
Ok k+1=Yk+1~ Yks (2 scattering that leads to backward motion of all the granules
behind the pulse, whereas the backscattering is minimal for
a is a constant that depends on the Young’'s modulus and>2 [7,24]. In this case the pulse is a solitary wg\ie] that
Poisson’s ratio, angl, is the displacement of granukefrom  becomes narrower and narrowerramcreases.
its equilibrium position. The exponentis 5/2 for spheres, it Three features determine pulse dynamics in these chains:
is 2 for cylinders, and in general depends on geometry. (1) the powem in the potential{2) the absence of a restoring

a
V(5k,k+l)=ﬁ|5|2,k+11 0<0,
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force; and(3) the discreteness of the system. Recently, we o5
discussed the role each of these features in the continuum
approximation, and extended previous results to include vis-
cosity[24]. Not only does this approximation work very well
for the n=2 case[7,24], but we confirmed a result well
known in the field, namely, that the continuum approxima-
tion works surprisingly well for the prototypical spherical
grains[7,17,24. However, a discussion of the reasons for 08
this agreement seems to be lacking. On the other hand, at the
other approximative extreme, models based on binary inter-
actions have also been proposed in order to study a chain of
spherical and other grains. Wu’s independent-collision model . L
[14] focuses on a chain of tapered grains. From energy and %o 2 0w 80 100
momentum conservation considerations, working in the

© limit. h h that his simpl del t th FIG. 1. Pulse velocity as a function of the power of the poten-
- Imit, he shows that nis simpie model captures €, rne giarg represent the numerical simulation results, the con-

qualitative behayior observed in simulations_ for Spherestinuous line represents the binary collision approximation, and the
Subsequently th's_ model was phenomenologically extendegqyen ine represents the continuum approximation.

and compared with experimental resulis]. We thus see

that two somewhat contrary approximations seem to Workgiven byz= (n/4)¥". Therefore, the time necessary for the

rather well for spherical grainsn(=5/2), but it is not clear yjse to travel from the first to the second particle is
which (or why) works better, nor is it clear how well each

works with changing. - Zm 1 g 10
Herein we address the question of the applicability of Tp(n Zf —0z_. 1

both the continuum approxi(rqnation and a binaprS interagtion 0 y1-4zl/n

model through the analysis of the velocity of the signal L )

propagation as a function of the power of the potential. FOIEXphCIt integration of Eq(10) then leads to the pulse veloc-

the former case, the pulse veloci,(n), can explicitly be 1Y Co(n)=1/Ty(n),

written as[24]

|3+ 7]
5 n2(n—2 (n—2)/2n 1 (42 n
C.(n)= \ﬁ (n=2 | Com=—5(5] - (11
n n(n—1) ( 4 ) r 1+ﬁ
2(n+2)\) ——I| —
6 n-2
(6) Our comparison is thus between E¢B). and(11).
Qualitatively both approximations give the same result:
where for n=2 the pulse velocity decreases with attaining its
minimum value fom=5, and then increasing and saturating

0.9

0.85
Q

0.75

2 |+_1 for largen (see Fig. 1 Quantitatively, however, they differ
1(1)=2' 7) appreciably. For instance, for large C,—1 while C.
T(1+1) —0.88.. ..
In Fig. 2 we present the relative error of our numerical
(the quantityC(n) here is the same ag, in Ref. [24]]. simulation of the chain as compared with each theory. These

On the other hand, for the binary collision approximationsimulations were performed in chains with up to 5000 grains
the set of equationg5) reduces to two coupled equations using a fifth order gear algorithm. The pulse velocity was
which may be decoupled by defining the normal mode varidetermined as the slope of the cutyg,,(t), whereka(t)

ablesz. =x;=x,. In particular, we have is the grain with maximum velocity at time Moreover, it
. - was observed that the pulse settles into its final shape and a
z =-2z_". (8) constant velocity after traveling along just a few grains.

o ) ) ) ) From this figure, it is easy to see that while the continuum
This is precisely the equation of motion for one particle sub-3pnroximation gives very good results for smalits predic-
jected to a potentiaV/(z)=22"/n. Furthermore, the initial tions are poor fom=3.0. On the other hand, the binary
conditions for the original variables lead m (0)=0 and  ¢ojjision approximation is extremely accurate for 3.0 but

z_(0)=1. Hence, from energy conservation we have not accurate for smah. The quantitative agreement of each
of the two analytic results at their respectivextremes with
}'zz (t)— E: _Ezn (t) 9) the numerical simulations is seen to be excellent. Again, we
2 2 n~— "’ stress thathese results are a reflection of the behavior of the

_ _ _ pulse width At smallern the pulse is relatively broad, the
Consequently,' the time at which the two partICIeS have thQ/e|OC|ty pu|se covers a humber of grai[ﬁzzﬂ, and a con-
same velocity Z_=0) is the time of maximum compression, tinuum approximation captures the pulse configuration and
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g 000 The resulting width is less than three grains when
E o >3.084.
J |o o°° In summary, continuum approximations give quantita-
o© tively accurate results for the pulse velocity in discrete
T o0 granular chains with relatively soft interactiona=<3.0
Dg? (which includes the generic cases of cylindrical and spherical
oo° Poooy graing. We have explicitly shown this on the basis of Nest-
% 4 ¢ 3 10 erenko’s theory, but improvements thereof do not apprecia-
bly increase the validity of continuum theories beyomd
FIG. 2. Relative error €;—Cg)/Cy in the pulse velocity as a ~3. This is of course connected to the fact that beyond this
function of the power of the potential. Here, the theoretical pulsen, the pulse is too narrow for continuum theories. The binary
velocity, Cr, is either the one obtained from the continuum colision model is quantitatively correct for relatively hard

e e oy, e o s e St o P TUISN=3.0, he QM where he puse ol o
chain. The dashed line is at-3.084, corresponding =3 in Eq. sentially no more than two granules at a time. The interesting

(12 point is that the pulse velocity for the entire range of poten-
tials can be obtained with quantitative accuracy with one or
the other of these two limiting approaches, with a maximum

speed very well. At largen the pulse becomes very narow, re|ative error of about 2% at a value of the exponent near that
discreteness effects dominate the behavior, and an approxis ipe ubiquitous spherical grains.

mation that assumes that two-grain collisions dominate the

pulse behavior reproduces the pulse velocity extremely accu- This work was supported by the Engineering Research
rately. To further support this conclusion, one can explicitlyProgram of the Office of Basic Energy Sciences at the U. S.
calculate the pulse width as a function of in the continu- Department of Energy under Grant No. DE-FGO03-

ous approximation7,17,24: 86ER13606.
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