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Pulse velocity in a granular chain
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We discuss the applicability of two very different analytic approaches to the study of pulse propagation in a
chain of particles interacting via a Hertz potential, namely, a continuum model and a binary collision approxi-
mation. While both methods capture some qualitative features equally well, the first is quantitatively good for
softer potentials and the latter is better for harder potentials.
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The physics of a chain of particles interacting via a gra
lar potential, i.e., a potential that is repulsive under load
and zero otherwise, remains a challenge despite a great
of recent work on the subject@1–15#. Theoretical studies o
pulse dynamics in frictionless chains have relied prima
on numerical solution of the equations of motion@2,5,7–
9,13,16#. Analytic work has relied on two rather different, i
some sense contradictory, approximations, with very li
direct comparison between them. It is our purpose to co
pare the predictions of these two approaches for the p
velocity to each other and to numerical simulations, in or
to assess the regimes of validity of each.

One of the approaches is based on continuum approx
tions to the equations of motion followed by exact or a
proximate solutions of these equations@7,16–18#. This ap-
proach is expected to give useful results when the puls
ratherbroad, i.e., when the velocity distribution of the grain
in the chain at any instant of time is rather smooth. The ot
approach is based on phenomenology about propertie
pairwise~or at times three-body! collisions together with the
assumption that pulses are sufficientlynarrow to involve
only two or three grains at any one time@14,19,20#. Some
rigorous methods in the literature might, with addition
work, also be brought to bear on the problem@12,21#.
Among the interesting quantities that one aims to calcu
with these approaches is the pulse velocity. In turn, succ
ful calculation of the pulse velocity requires a good und
standing of the pulse width.

The standard generic model potential between mono
perse elastic granules that repel upon overlap accordin
the Hertz law is given by@22,23#

V~dk,k11!5
a

n
uduk,k11

n , d<0,

V~dk,k11!50, d.0. ~1!

Here

dk,k11[yk112yk , ~2!

a is a constant that depends on the Young’s modulus
Poisson’s ratio, andyk is the displacement of granulek from
its equilibrium position. The exponentn is 5/2 for spheres, it
is 2 for cylinders, and in general depends on geometry.
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The displacement of thekth granule (k51,2, . . . ,L) in
the chain from its equilibrium position in a frictionless m
dium is thus governed by the equation of motion

m
d2yk

dt2
52a~yk2yk11!n21u~yk2yk11!

1a~yk212yk!
n21u~yk212yk!. ~3!

Here u(y) is the Heaviside function,u(y)51 for y.0,
u(y)50 for y,0, andu(0)51/2. It ensures that the par
ticles interact only when in contact. In this report we co
sider a finite open chain, and therefore the first term on
right-hand side of this equation is absent for the last gran
and the second term is absent for the first.

Initially the granules are placed along a line so that th
just touch their neighbors in their equilibrium positions~no
precompression!, and all but the leftmost particle are at res
The initial velocity of the leftmost particle isv0 ~the im-
pulse!. In terms of the rescaled variables

yk5S mv0
2

a D 1/n

xk , t5
1

v0
S mv0

2

a D 1/n

t, ~4!

Eq. ~3! can be rewritten as

ẍk52~xk2xk11!n21u~xk2xk11!

1~xk212xk!
n21u~xk212xk!, ~5!

where a dot denotes a derivative with respect tot. In the
rescaled variables the initial conditions becomexk(0)
5 ẋk(0)50, ;kÞ1, x1(0)50, andẋ1(0)51.

When n.2 an initial impulse settles into a pulse that
increasingly narrow with increasingn, and propagates at
velocity that is essentially constant and determined byn and
by the amplitude of the pulse. Forn52 the pulse spreads in
time and travels at a constant velocity independent of pu
amplitude. In the latter case there is considerable ba
scattering that leads to backward motion of all the granu
behind the pulse, whereas the backscattering is minimal
n.2 @7,24#. In this case the pulse is a solitary wave@12# that
becomes narrower and narrower asn increases.

Three features determine pulse dynamics in these cha
~1! the powern in the potential;~2! the absence of a restorin
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force; and~3! the discreteness of the system. Recently,
discussed the role each of these features in the contin
approximation, and extended previous results to include
cosity@24#. Not only does this approximation work very we
for the n52 case@7,24#, but we confirmed a result wel
known in the field, namely, that the continuum approxim
tion works surprisingly well for the prototypical spheric
grains @7,17,24#. However, a discussion of the reasons
this agreement seems to be lacking. On the other hand, a
other approximative extreme, models based on binary in
actions have also been proposed in order to study a cha
spherical and other grains. Wu’s independent-collision mo
@14# focuses on a chain of tapered grains. From energy
momentum conservation considerations, working in then
→` limit, he shows that his simple model captures t
qualitative behavior observed in simulations for spher
Subsequently this model was phenomenologically exten
and compared with experimental results@15#. We thus see
that two somewhat contrary approximations seem to w
rather well for spherical grains (n55/2), but it is not clear
which ~or why! works better, nor is it clear how well eac
works with changingn.

Herein we address the question of the applicability
both the continuum approximation and a binary interact
model through the analysis of the velocity of the sign
propagation as a function of the power of the potential. F
the former case, the pulse velocity,Cc(n), can explicitly be
written as@24#

Cc~n!5A2

n F n2~n22!

2~n12!An~n21!

6
I S 4

n22
D G

(n22)/2n

,

~6!

where

I ~ l !52l

G2S l 11

2 D
G~ l 11!

~7!

~the quantityCc(n) here is the same asc0 in Ref. @24##.
On the other hand, for the binary collision approximati

the set of equations~5! reduces to two coupled equation
which may be decoupled by defining the normal mode v
ablesz65x16x2 . In particular, we have

z̈2522z2
n21. ~8!

This is precisely the equation of motion for one particle su
jected to a potentialV(z)52zn/n. Furthermore, the initial
conditions for the original variables lead toz2(0)50 and
ż2(0)51. Hence, from energy conservation we have

1

2
ż2

2 ~ t !2
1

2
52

2

n
z2

n ~ t !. ~9!

Consequently, the time at which the two particles have
same velocity (ż250) is the time of maximum compression
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given byzm5(n/4)1/n. Therefore, the time necessary for th
pulse to travel from the first to the second particle is

Tb~n!5E
0

zm 1

A124z2
n /n

dz2 . ~10!

Explicit integration of Eq.~10! then leads to the pulse veloc
ity Cb(n)51/Tb(n),

Cb~n!5
1

p1/2S 4

nD 1/n GS 1

2
1

1

nD
GS 11

1

nD . ~11!

Our comparison is thus between Eqs.~6! and ~11!.
Qualitatively both approximations give the same resu

for n*2 the pulse velocity decreases withn, attaining its
minimum value forn.5, and then increasing and saturatin
for largen ~see Fig. 1!. Quantitatively, however, they diffe
appreciably. For instance, for largen, Cb→1 while Cc
→0.883 . . . .

In Fig. 2 we present the relative error of our numeric
simulation of the chain as compared with each theory. Th
simulations were performed in chains with up to 5000 gra
using a fifth order gear algorithm. The pulse velocity w
determined as the slope of the curvekmax(t), wherekmax(t)
is the grain with maximum velocity at timet. Moreover, it
was observed that the pulse settles into its final shape a
constant velocity after traveling along just a few grain
From this figure, it is easy to see that while the continuu
approximation gives very good results for smalln, its predic-
tions are poor forn*3.0. On the other hand, the binar
collision approximation is extremely accurate forn*3.0 but
not accurate for smalln. The quantitative agreement of eac
of the two analytic results at their respectiven extremes with
the numerical simulations is seen to be excellent. Again,
stress thatthese results are a reflection of the behavior of t
pulse width. At smaller n the pulse is relatively broad, th
velocity pulse covers a number of grains@7,24#, and a con-
tinuum approximation captures the pulse configuration a

FIG. 1. Pulse velocity as a function of the power of the pote
tial. The stars represent the numerical simulation results, the
tinuous line represents the binary collision approximation, and
broken line represents the continuum approximation.
1-2
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speed very well. At largern the pulse becomes very narrow
discreteness effects dominate the behavior, and an app
mation that assumes that two-grain collisions dominate
pulse behavior reproduces the pulse velocity extremely a
rately. To further support this conclusion, one can explic
calculate the pulse widtha as a function ofn in the continu-
ous approximation@7,17,24#:

FIG. 2. Relative error (CT2CS)/CT in the pulse velocity as a
function of the power of the potential. Here, the theoretical pu
velocity, CT , is either the one obtained from the continuu
~circles! or from the binary collision~squares! approximation.CS is
the pulse velocity obtained from the numerical simulations of
chain. The dashed line is atn53.084, corresponding toa53 in Eq.
~12!.
r.

-
-

s:
m
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a5F6~n22!2

n~n21! G1/2

. ~12!

The resulting width is less than three grains whenn
.3.084.

In summary, continuum approximations give quanti
tively accurate results for the pulse velocity in discre
granular chains with relatively soft interactions,n&3.0
~which includes the generic cases of cylindrical and spher
grains!. We have explicitly shown this on the basis of Nes
erenko’s theory, but improvements thereof do not appre
bly increase the validity of continuum theories beyondn
;3. This is of course connected to the fact that beyond
n, the pulse is too narrow for continuum theories. The bin
collision model is quantitatively correct for relatively har
potentials,n*3.0, the regime where the pulse involves e
sentially no more than two granules at a time. The interes
point is that the pulse velocity for the entire range of pote
tials can be obtained with quantitative accuracy with one
the other of these two limiting approaches, with a maximu
relative error of about 2% at a value of the exponent near
of the ubiquitous spherical grains.
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